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Abstract

Complex networks with community structures are ubiquitous in the real world. Despite many approaches developed for
detecting communities, we continue to lack tools for identifying overlapping and bridging nodes that play crucial roles in
the interactions and communications among communities in complex networks. Here we develop an algorithm based on
the local flow conservation to effectively and efficiently identify and distinguish the two types of nodes. Our method is
applicable in both undirected and directed networks without a priori knowledge of the community structure. Our method
bypasses the extremely challenging problem of partitioning communities in the presence of overlapping nodes that may
belong to multiple communities. Due to the fact that overlapping and bridging nodes are of paramount importance in
maintaining the function of many social and biological networks, our tools open new avenues towards understanding and
controlling real complex networks with communities accompanied with the key nodes.
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Introduction

Many real networks typically contain components in which the

nodes are of much denser connections to each other than to the

rest of the network. The sets of such nodes are usually called

communities or modules [1–3]. Communities indicate the

existence of different groups that perform specific roles in social

and biological networks. Exploring network communities is an

important task in the sense that they provide graphical clues to the

specific functions of groups of nodes and allows us to explore a

network at a coarse level, which is much more helpful for

understanding dynamical processes taking place on a network

rather than inspect a network as a whole without any a priori

knowledge about the similarity and functions of nodes [4]. Thus

many methods have been developed for community detection,

such as progressively removing the edges with maximum

betweenness [5], optimizing the strength of the community by

merging nodes [6], the extremal optimization method [7], and

approaches based on the dynamical processes taking place on

networks [8].

Despite the algorithms developed for detecting communities in

complex networks, precisely partitioning communities in many

real scenarios is still a challenging problem because of the

existence of special nodes that belong to different communities

simultaneously, namely, overlapping nodes. Some approaches

have been presented attempting to solve the community detection

problem associated with overlapping nodes. For example, Palla et

al. proposed a method based on clique percolation [9]. A

community is defined by a set of nodes that can be visited by

rolling a k clique over the network through other cliques with k{1
common nodes. Lancichinetti et al. proposed an algorithm to

detect overlapping and hierarchical structures using a fitness

function [10]. In contrast, fuzzy modularity concentrated on the

probabilities of each node belonging to different modules [11].

Guimera et al. classified nodes based on their roles within

communities, using their within-module degree and their partic-

ipation coefficient to reflect their positions in their own module

and with respect to other modules [12]. Nonetheless, to the best of

our knowledge, we still lack an efficient method to identify

‘‘connectors’’ among communities without relying on accurate

partition of communities. Here we classify connectors into two

categories: overlapping node and bridging node. Overlapping

nodes refer to the nodes that belong to two or more communities

with a number of edges connecting to each community, e.g., node

12 in Fig. 1. Whereas bridging nodes refer to the nodes that belong

to a single community but has a few connections to the other

communities; in other words, their edges bridge their own

communities and the others, e.g. node 16 and 24 in Fig. 1. The

two types of nodes play key roles in the communications and

interactions among different communities and server as ‘‘messen-

gers’’. Although we may find the two types of nodes in terms of

partitioning communities by using the established methods, it is

computational exhausted and considerably depends on the

accuracy of detecting communities that has yet not been fully

resolved. Despite some interesting methods based on synchroni-

zation processes to locate overlapping nodes [8], they are not

available for bridging nodes. Moreover, algorithms and tools for
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tackling overlapping communities in directed networks are still

lacking.

In this paper, we propose a method to detect and distinguish

overlapping nodes and bridging nodes based on the current flow in

the electrical circuits. The current-flow-based methodology has

been exploited for studying complex networks, for instance, for

exploring transportation dynamics of resistor networks [13] and

modeling information flow in biological networks and finding

nodes with significant biological function [14–17]. Inspired by the

insightful approaches, we map an arbitrary network into an

electrical-circuit network in which all the edges are resistors with a

specific electrical conductance, and a pair of nodes can be set as

the source and sink (target) of the current flowing through the

network. By combining Kirchhoff’s law and Ohm’s law, we can

calculate the flow of each edge for a given source and target of

flow. It is intuitive that overlapping and bridging nodes usually

have high current flows as measured by the current-flow centrality

C, because of their specific positions. Thus the two types of nodes

can be distinguished from the other nodes by their high values of

C. Meanwhile, we offer an imbalance index D that captures the

imbalance of current flows along the edges of nodes to separate the

two types of nodes. In particular, the bridging edges of bridging

nodes are of much high current flows than the rest of their edges.

In contrast, the current flows along the edges of an overlapping

node are relatively balanced because of the fact that the current

flow passing through it is shared by its edges densely connecting to

both communities. The main advantage of our method is that

overlapping and bridging nodes can be identified without knowing

the exact community partition of the network, accounting for its

high efficiency and feasibility in detecting the key nodes.

Moreover, our method can be applied to directed networks in a

similar fashion. We substantiate our method in terms of a number

of model and empirical networks, including the Lancichinetti-

Fortunato-Radicchi (LFR) benchmark with tunable community

structure and a power-law degree distribution [18], Zachary’s

Karate Club (ZK) network [19], the scientific collaboration

network in Santa Fe Institute (SFI) [20] and the neural network

of C. elegans [21]. The two types of nodes in all the networks are

detected with high probability and efficiency. We finally discussed

the shortage of our method rooted in the implicit definition of

communities.

Figure 1. Schematic network composed of 32 nodes and separated into 3 parts. Certain nodes connect the separate parts.
doi:10.1371/journal.pone.0097021.g001

Figure 2. An electrical-circuit network with an electrical
conductance on each edge. Current flows through the network
from the source node s and leaves at the target node t, each edge has a
fixed conductance.
doi:10.1371/journal.pone.0097021.g002
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Methods

Electrical-circuit method for undirected and directed
network

In an electrical-circuit network generated by placing a resistor

with a specific electrical conductance on each edge of the network

[22], as shown in Fig. 2, a given pair of nodes will serve as the

source and target nodes, where current is injected into the network

at the source node and leaves at the target node. In fact, any

arbitrary network can be represented as a resistor network.

Current flows from the source node s to the target node t, which

causes a voltage difference between node s and node t. Ohm’ s law

states that the current through a conductor between two points is

directly proportional to the potential difference across the two

points; thus, for a given source-target pair, the current flowing

through an arbitrary edge(i, j) is

Ist
ij ~Cij(Vi{Vj), ð1Þ

where Cij is an element of the adjacency matrix, and I represents

the current between nodes i and j when the current is injected into

the source node s and leaves at the target node t.

We consider the general case: node i connects to k neighbors,

and for an arbitrary node i, Kirchhoff’s law states that the total

current flow into or out of any node is zero. Combining Kirchhoff’

s law with Ohm’s law, implies that the voltages satisfy the equation

Xk

j~1

Iij~
Xk

j

Cij(Vi{Vj)~0: ð2Þ

Physically, the source node maintains a constant potential,and

the target is chosen to be the preferred node by which it connects

to the ground. For a network with n nodes, there are n linear

equations, which can be written as follows:

Vi~

1 i~s,

0 i~t,P
j

Cij

Ci

Vj otherwise:

8>><
>>:

ð3Þ

where Ci the sum is over all neighbors of node i. The potential of

each node i can be solved using an iterative method such as the

Jacobi method.

The method can be extended to a directed network as long as

we replace the resistors with an electrical circuit of diodes, as

shown in Fig. 3, in this equivalent electrical circuit, all the nodes

are connected to a universal sink (ground) whose potential value is

zero [23]. The voltages of the nodes need be adjusted to satisfy

Kirchhoff’s law, which states that the sum of all currents entering

node i must be equal to the sum of all currents leaving node i; if

the node receives more current than the sum of the outgoing

currents, the node must increase in voltage to decrease the

incoming currents and increase the outgoing currents, and vice

versa. This updating process will continue until all nodes satisfy

Kirchhoff’s law.

Similar to Eq. (1), the current flowing from node i to node j is

given by Ohm’s law for a given source s and universal sink

(ground):

I
sg
ij ~C�ij(Vi{Vj), ð4Þ

where Cij is the conductance of an ideal diode representing the

edge from node i to node j:

C�ij~
Cij if edge exists and ViwVj ,

0 otherwise:

�
ð5Þ

The voltage of node i is determined by Kirchhoff’s law that the

sum of the currents one node supplies to its neighbors must be

equal to the sum of the currents it receives.

X
j

Iij~
X

j

Iji: ð6Þ

When Eqs. (4), (5), and (6) are combined, the result can be

expressed in terms of the potentials of the neighboring nodes:

Vi~

P
j

C�ijVjz
P

j

C�jiVj

P
j

C�ijz
P

j

C�ji
: ð7Þ

Just as in the undirected case, the potential of each node is the

weighted average potential of its neighbors. To compute the

current flow, we need to enumerate all nodes, which takes the

amount of O(n) time. We consecutively update a node’s voltage to

the average voltage of its neighbors, according to Eq. (7). It takes

the amount of O(
P

ki)~O(m) time to update the voltage in one

loop, where m is the average degree of nodes. The updating

process converges in a small number of steps, say, c. Thus the total

computational time is O(cnm) [15].

Figure 3. A simple network with four nodes and its equivalent circuit network. Edges are represented by electrical-circuit diodes and nodes
are connected to a universal sink.
doi:10.1371/journal.pone.0097021.g003
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Method of finding and distinguishing two types of key
nodes

The overlapping and bridging nodes are located at conjunction

positions, and the removal of these nodes will disable the

interactions and communications among communities. As shown

in Fig. 1, for example, node 16 and 24 are bridging nodes. They

have edges with most of the nodes within their respective groups

and a few edges that connect outside the groups. In the fields of

community-network analysis and information dissemination, a

bridging node controls information flow and diffusion; it has

strong internal control within the community and strong

connections among communities. Meanwhile, node 12 is an

overlapping node between two communities. It connects the

communities.

To identify the two types of nodes, the first task is to establish an

index to distinguish them from the other nodes in a network.

Considering an electrical-circuit network, nodes within a commu-

nity are connected densely, and therefore their voltages may be

similar to each other, while a large potential gap is present

between two communities where the connecting edges are sparse

and the local resistance is large. Thus, the current through the

nodes or edges that connect the two communities can be

significantly greater than the current through the nodes or edges

within a community. Thus, a higher current value for a node

indicates that it is more likely to be subject to the two types of

nodes. As a second step, we note that overlapping nodes belong to

more than one community and are usually associated with

relatively denser connections to each community. We thus

introduce the D index to measure the imbalance of the current

value on the edges of a node to separate the two types of nodes.

The current-flow centrality C to measure the significance of a

node, which takes into account the contributions of all paths to the

node. For a given node, C measures the current flow that passes

through the node when a unit of current is injected into a source

node and removed from a target node, averaged over all source-

target pairs. Given a source s and a target t, the absolute current

flow through the edge(i,j) is given by Eq. (1). By Kirchhoff’s law,

the current that enters a node is equal to the current that leaves the

node. Hence, the current flow through a node i other than the

source nodes and target nodes is half of the absolute flow on the

edges incident to i:

Fst
i ~

1

2

Xn

j

DIst
ij D: ð8Þ

Moreover, the current flows through both s and t are set to fixed

values. We give a precise definition of the current-flow centrality of

a node:

Ci~
1

M{1

X
svt

F st
i , ð9Þ

where M is the total number of source-target pairs. When

extended to a directed network, there is little difference from the

present case for an arbitrary node i between the source node s and

the universal sink (ground). Due to the fact that

F
sg
i ~

X
j

I
sg
ji , ð10Þ

we define the directed current-flow centrality C as:

Figure 4. Example network with two groups. Each group contains six nodes, the central node 7 connects the two groups.
doi:10.1371/journal.pone.0097021.g004

Table 1. Centrality indices of the example sketched in Fig. 4.

Node Label Current-flow centrality Betweenness centrality

7 0.308 0

6,8 0.655 0.538

5,13 0.353 0.144

3,4,9,12 0.279 0.061

1,2,10,11 0.238 0.008

doi:10.1371/journal.pone.0097021.t001
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Ci~
1

N{1

XN

s~1

F
sg
i , ð11Þ

where N is the size of the network. When choosing pairs of nodes

as the source and target each time, we obtain the current flow of

the edge(i,j). Tij~
P

svt I st
ij is the summed current flow through

the edge(i,j) when the source and target nodes are changed. The D
index of node i measures the difference between the max and

median value of node i:

Di~max(Ti){median(Ti): ð12Þ

Note that Ti~
P

j Tij , where the sum is over all the neighbors of

node i. We normalize this D index by dividing by the maximum

value of D. For a directed network, we merge each pair of in- and

out-edges into one edge, and for node i, by adding the two current

values, we can obtain the undirected and the directed D index.

Results

Performance on artificial networks
Prior to applying our method to real-world networks, we discuss

the inherent limits of the betweenness-based method for inferring

the two types of nodes. In principle, the index of betweenness

centrality is exclusively determined by shortest paths but omitting

the other longer paths, accounting for the missing of some critical

nodes in some scenarios. In contrast, our current-flow-based

method takes the sharing of current flow according to the

conservation into account, giving rise to a more comprehensive

characterization of the statues of nodes in the network with

inapparent communities. Take a sample network as shown in Fig. 4

as an example. There are two communities, each of which consists

of 6 nodes. As table 1 shows, both of index rank nodes 6 and 8 of

highest, however, the betweenness fails to give a higher score to

the topological central position node 7 in this simple network. In

contrast, our current-flow centrality C gives a relatively higher

score of node 7. This explicitly indicates that the critical node 7

that bridges the two communities is missed by using the

betweenness-centrality-based method.

To obtain a preliminary assessment of the underlying network

characteristics identified by the indices C and D, we apply them to

an artificial network consisting of the nodes and edges shown in

Fig. 1. The network is constructed by joining 3 parts with bridging

nodes and overlapping nodes. The small network size enables that

any pattern present could be easily detected by visual inspection.

As shown in Fig. 5(a), we artificially define the top 10% of nodes in

terms of C to be key nodes. In other words, the threshold of

distinguishing the two types of key nodes from the other nodes is

determined by the C of top 10% of nodes. As shown in Fig. 5(b),

the results reveal that the highest values of current flow occur in

the nodes 12, 24, and 16. These nodes connect different

communities of the network and plays important roles in the

network. Despite their high values of C, they differ in their D

indices considerable. As stated before, a high C value and a low D
value of node 12 indicate that the node acts as an overlapping

node that belongs to both the two communities that it connects. In

contrast, 24 and 16 have high C and high D values simulta-

neously, indicating that they more likely to be bridging nodes.

We test our method on the LFR benchmark introduced by

Lancichinetti et al. [18]. In the LFR benchmark, the node degrees

follow a power-law distribution with the exponent a, and the sizes

of the communities follow another power-law distribution with

then exponent b. To ensure a clear community structure, we set

a~2, b~1:5, and m~0:075. It can be intuitively understood that

some nodes that connect two or more communities have large

current values, corresponding to bridging nodes or overlapping

nodes, as discussed before. Thus we need to introduce the D index

to distinguish these two types of nodes by using the current-

distribution information for each node. The results demonstrate

that some nodes whose current values are significantly larger than

those of other nodes may be regarded as the two types of key

nodes. As shown in Fig. 6, the network can be well separated into

Figure 5. The usage of our method in the schematic network. (a) The cumulative distribution function of the C index. One can obtains a
corresponding value of the C index when F(C) reaches 0.9. The dash line indicates the threshold. Nodes of higher value than the threshold are key
nodes. (b) The scatter plot of indices C and D. A high C value and a low D value of 12 indicate that it could be considered as overlapping node, while
16 and 24 behave as bridging nodes.
doi:10.1371/journal.pone.0097021.g005
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two categories. The nodes at the upper right of the scatter plot

have relatively high values of both C and D, which indicates they

have more internal edges than external edges. The nodes at the

lower left are contained within communities and have few edges

outside their communities. It can be claimed that there are no

obvious overlapping nodes in this LFR benchmark, but it may

contain some bridging nodes.

Figure 6. The usage of our method and in the LFR benchmark network. (a) The network is generated according to the rules of LFR
benchmark. Nodes diameters indicate the current-flow centrality C, the color of each node is proportional to the index D. (b) The cumulative
distribution function is used to identify the threshold of the C index. (c) the network can be separated by two categories according to the scatter plot,
the upper right nodes can be considered as bridging nodes with high value of C and D. There are no overlapping nodes in this network.
doi:10.1371/journal.pone.0097021.g006
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Real-world networks
We test our method by using a number of real-world networks:

the ZK network [19], the SFI network [20], and the C. elegans

neural network [21]. All the data are available for the Open

Access. In each case, we find that our method reliably detects the

important nodes and ideally distinguishes the two types of nodes.

First, we consider ZK club network. In fact, Zachary observed

34 members of a karate club over 2 years. The nodes labeled as 1

and 34 correspond to the club instructor and the administrator,

respectively. During the course of the study, a disagreement

developed between the administrator of the club and the club’s

instructor, which ultimately led to the instructor leaving and

starting a new club, taking approximately half of the original club’s

members with him. From the results shown in Fig. 7, nodes 1, 34,

and 3 have the highest C values and can be considered to be key

nodes. Furthermore, node 3 is considered to be an overlapping

node between the communities and displays a high value of

current flow but a smaller D value. Our identified bridging node 3

is consistent with the overlapping nodes identified in ref [24,25].

Nodes 1 and 34, which are known to be the administrator and

instructor of the karate club, are more likely to be bridging nodes

because they have high current values of C and high values of the

D, as discussed before. The visualization of the ZK network is

shown in Fig. 7(a). The size of each node is proportional to the

value of C. This visual perspective reveals that there are only a few

nodes of large diameter, which means that few important nodes

exist in this network. Additionally, a yellow color indicates a high

value of D. That is to say, large yellow nodes are more likely to be

bridging nodes, while large red nodes are more likely to be

overlapping nodes.

Applying the directed electrical-circuit network paradigm, we

investigate the SFI scientific collaboration network. We convert it

Figure 7. The usage of our method in ZK network. (a) The network consists of 34 nodes. The size of each node represents its C index value. The
color of each node is proportional to its D index. (b) The cumulative distribution function of the C index and the threshold. In (c), nodes 1 and 34 act
as bridging nodes because they have high value of C and D indices, in contrast, node 3 can be considered as overlapping node with a high C value
and a low D value.
doi:10.1371/journal.pone.0097021.g007
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to be a directed network by randomly a direction to each of the

edges. The result shown in Fig. 8(c) indicates that node 72, 87,

106, and 2 have high values of C, all these nodes act as connection

points among communities. Due to the fact that node 106 has a

high value of C and a large value of the D, it can be considered to

be a bridging node. In fact, from visual inspection of Fig. 8(a), we

find that it has primarily inward-directed edges and only a few

edges directed toward other communities, which means that this

node transfers information that is received from the outside and

spread in communities. Nodes 72 and 87 have similar character-

istics, while node 2 behaves more like an overlapping node.

We also apply our method to another directed network: the C.

elegans neural network [21]. The network contains 302 nodes and

2359 edges and is divided into 3 communities, with each node

representing a neuron and each edge representing a synaptic

connection between neurons. The C. elegans neural network is

Figure 8. The usage of our method in the directed SFI scientist collaboration network. (a) Schematic of the SFI scientist collaboration
network. Node diameters indicate the C index value, the color of each node is proportional to the index D. (b,c) The current-flow centrality C and
index D for the directed SFI scientist collaboration network.
doi:10.1371/journal.pone.0097021.g008
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composed of sensory neurons, inter-neurons and motor neurons.

The neurons with high centrality indices often have the most

important functions, and all of them are inter-neurons. Applying

our method to this network (see Fig. 9) demonstrates that a fairly

large number of nodes have high values of C, which indicates that

there exists a significant proportion of neurons that are connected

to different parts of the brain. Upon further investigation of these

connection nodes, we find that the node named ‘SAADL’ has

relatively low D values, meaning that they are more likely to act as

overlapping nodes rather than bridging nodes.

Discussion

We have offered an electrical-circuit-based method to ascertain

and distinguish overlapping and bridging nodes that play key roles

in the communications and interactions among communities in

complex networks without the need to partition all communities

explicitly. The two types of critical nodes can be distinguished

from the other nodes within communities by the relatively high

current flow passing through them, as captured by the centrality of

current flow. Further, the two types of nodes can be distinguished

from each other via the imbalance of flows along their edges. In

particular, the bridging edges of bridging nodes exhibit much high

current flows than the other edges of the nodes. Whereas for the

overlapping nodes, due to their dense connections to two

communities and the absence of bridging edges, the current flows

along their edges are relatively balanced. Thus the combination of

the centrality of current flow passing through nodes and the

imbalance of current flows along the edges of nodes offers a

criterion for identifying the two types of nodes with high

probability. In contrast, we have shown that the method for

community partition based on the betweenness centrality cannot

be used to address this problem. We have applied our method to a

number of artificial and real networks with certain community

structure, finding that the two types of nodes discovered by our

method are in good agreement with the inspection of small

visualized networks. Another advantage of our method is that it is

available for both undirected and directed networks, accounting

for its broad application scope in real situations.

Despite the advantages of our method compared to previously

established methods in the literature, there are still some open

questions pertaining to explicitly inferring overlapping and

bridging nodes. For example, although our method is capable of

finding these nodes with high probability, we continue to lack a

reasonable threshold so as to exactly distinguish the two types of

nodes. The challenge is rooted in the fact that there is only the

measurement for the strength of communities rather than the

exact definition of a community, accounting for the difficulty in

exactly defining and recovering overlapping and bridging nodes.

Nevertheless, our approach offers an alternative avenue for

addressing the fundamental problem in complex networks and it

is indeed effective and more efficient than existent methods in the

literature based on the shortest paths and the betweenness

centrality. Taken together, our approach could motivate further

effort towards detecting the key nodes pertaining to ubiquitous

community structures in complex networks.
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